\(\int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [860]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 107 \[ \int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {b^2 B x \sqrt {b \cos (c+d x)}}{2 \sqrt {\cos (c+d x)}}+\frac {A b^2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {b^2 B \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d} \]

[Out]

1/2*b^2*B*x*(b*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2)+A*b^2*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)+1/2
*b^2*B*sin(d*x+c)*cos(d*x+c)^(1/2)*(b*cos(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.061, Rules used = {17, 2813} \[ \int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {A b^2 \sin (c+d x) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {b^2 B x \sqrt {b \cos (c+d x)}}{2 \sqrt {\cos (c+d x)}}+\frac {b^2 B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}{2 d} \]

[In]

Int[((b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(b^2*B*x*Sqrt[b*Cos[c + d*x]])/(2*Sqrt[Cos[c + d*x]]) + (A*b^2*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[Cos[
c + d*x]]) + (b^2*B*Sqrt[Cos[c + d*x]]*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(2*d)

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 2813

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*a*c +
 b*d)*(x/2), x] + (-Simp[(b*c + a*d)*(Cos[e + f*x]/f), x] - Simp[b*d*Cos[e + f*x]*(Sin[e + f*x]/(2*f)), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (b^2 \sqrt {b \cos (c+d x)}\right ) \int \cos (c+d x) (A+B \cos (c+d x)) \, dx}{\sqrt {\cos (c+d x)}} \\ & = \frac {b^2 B x \sqrt {b \cos (c+d x)}}{2 \sqrt {\cos (c+d x)}}+\frac {A b^2 \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {b^2 B \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)} \sin (c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.53 \[ \int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(b \cos (c+d x))^{5/2} (4 A \sin (c+d x)+B (2 (c+d x)+\sin (2 (c+d x))))}{4 d \cos ^{\frac {5}{2}}(c+d x)} \]

[In]

Integrate[((b*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

((b*Cos[c + d*x])^(5/2)*(4*A*Sin[c + d*x] + B*(2*(c + d*x) + Sin[2*(c + d*x)])))/(4*d*Cos[c + d*x]^(5/2))

Maple [A] (verified)

Time = 5.11 (sec) , antiderivative size = 58, normalized size of antiderivative = 0.54

method result size
default \(\frac {b^{2} \sqrt {\cos \left (d x +c \right ) b}\, \left (B \sin \left (d x +c \right ) \cos \left (d x +c \right )+2 A \sin \left (d x +c \right )+B \left (d x +c \right )\right )}{2 d \sqrt {\cos \left (d x +c \right )}}\) \(58\)
parts \(\frac {A \,b^{2} \sin \left (d x +c \right ) \sqrt {\cos \left (d x +c \right ) b}}{d \sqrt {\cos \left (d x +c \right )}}+\frac {B \,b^{2} \sqrt {\cos \left (d x +c \right ) b}\, \left (\cos \left (d x +c \right ) \sin \left (d x +c \right )+d x +c \right )}{2 d \sqrt {\cos \left (d x +c \right )}}\) \(79\)
risch \(\frac {b^{2} B x \sqrt {\cos \left (d x +c \right ) b}}{2 \sqrt {\cos \left (d x +c \right )}}+\frac {A \,b^{2} \sin \left (d x +c \right ) \sqrt {\cos \left (d x +c \right ) b}}{d \sqrt {\cos \left (d x +c \right )}}+\frac {b^{2} \sqrt {\cos \left (d x +c \right ) b}\, B \sin \left (2 d x +2 c \right )}{4 \sqrt {\cos \left (d x +c \right )}\, d}\) \(95\)

[In]

int((cos(d*x+c)*b)^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2*b^2/d*(cos(d*x+c)*b)^(1/2)*(B*sin(d*x+c)*cos(d*x+c)+2*A*sin(d*x+c)+B*(d*x+c))/cos(d*x+c)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 219, normalized size of antiderivative = 2.05 \[ \int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\left [\frac {B \sqrt {-b} b^{2} \cos \left (d x + c\right ) \log \left (2 \, b \cos \left (d x + c\right )^{2} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - b\right ) + 2 \, {\left (B b^{2} \cos \left (d x + c\right ) + 2 \, A b^{2}\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )}, \frac {B b^{\frac {5}{2}} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {b} \cos \left (d x + c\right )^{\frac {3}{2}}}\right ) \cos \left (d x + c\right ) + {\left (B b^{2} \cos \left (d x + c\right ) + 2 \, A b^{2}\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, d \cos \left (d x + c\right )}\right ] \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

[1/4*(B*sqrt(-b)*b^2*cos(d*x + c)*log(2*b*cos(d*x + c)^2 - 2*sqrt(b*cos(d*x + c))*sqrt(-b)*sqrt(cos(d*x + c))*
sin(d*x + c) - b) + 2*(B*b^2*cos(d*x + c) + 2*A*b^2)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(d*
cos(d*x + c)), 1/2*(B*b^(5/2)*arctan(sqrt(b*cos(d*x + c))*sin(d*x + c)/(sqrt(b)*cos(d*x + c)^(3/2)))*cos(d*x +
 c) + (B*b^2*cos(d*x + c) + 2*A*b^2)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c))]

Sympy [F(-1)]

Timed out. \[ \int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((b*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(3/2),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.47 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.44 \[ \int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {4 \, A b^{\frac {5}{2}} \sin \left (d x + c\right ) + {\left (2 \, {\left (d x + c\right )} b^{2} + b^{2} \sin \left (2 \, d x + 2 \, c\right )\right )} B \sqrt {b}}{4 \, d} \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/4*(4*A*b^(5/2)*sin(d*x + c) + (2*(d*x + c)*b^2 + b^2*sin(2*d*x + 2*c))*B*sqrt(b))/d

Giac [F]

\[ \int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac {5}{2}}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((b*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c))^(5/2)/cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 14.91 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.49 \[ \int \frac {(b \cos (c+d x))^{5/2} (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {b^2\,\sqrt {b\,\cos \left (c+d\,x\right )}\,\left (4\,A\,\sin \left (c+d\,x\right )+B\,\sin \left (2\,c+2\,d\,x\right )+2\,B\,d\,x\right )}{4\,d\,\sqrt {\cos \left (c+d\,x\right )}} \]

[In]

int(((b*cos(c + d*x))^(5/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^(3/2),x)

[Out]

(b^2*(b*cos(c + d*x))^(1/2)*(4*A*sin(c + d*x) + B*sin(2*c + 2*d*x) + 2*B*d*x))/(4*d*cos(c + d*x)^(1/2))